Online ISSN: 2187-2988 Print ISSN: 0911-1794
特定非営利活動法人日本小児循環器学会 Japanese Society of Pediatric Cardiology and Cardiac Surgery
Pediatric Cardiology and Cardiac Surgery 41(3): 113-122 (2025)
doi:10.9794/jspccs.41.113

ReviewReview

データ駆動時代の川崎病研究オミクス解析から人工知能までResearch on Kawasaki Disease in the Data-Driven Era: New Epidemiology, Omics Data, and Artificial Intelligence

1岐阜工業高等専門学校 電気情報工学科National Institute of Technology, Gifu College ◇ Gifu, Japan

2国立国際医療研究センター研究所 感染病態研究部Department of Viral Pathogenesis and Controls, National Center for Global Health and Medicine ◇ Chiba, Japan

3岡山大学病院 小児科Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science ◇ Okayama, Japan

4山梨大学医学部 小児科Department of Pediatrics, University of Yamanashi ◇ Yamanashi, Japan

5三重大学医学部附属病院 周産母子センターDepartment of Pediatrics, The University of Mie Graduate School of Medicine ◇ Mie, Japan

6山口大学医学部 小児科Department of Pediatrics, Yamaguchi University Graduate School of Medicine ◇ Yamaguchi, Japan

7千葉大学大学院医学研究院 小児病態学Department of Pediatrics, Graduate School of Medicine, Chiba University ◇ Chiba, Japan

発行日:2025年8月1日Published: August 1, 2025
HTMLPDFEPUB3

第60回日本小児循環器学会学術集会で行われた「データ駆動時代の川崎病研究:オミクス解析から人工知能まで」シンポジウムの内容を抜粋して報告する.機械学習を用いた川崎病病因の探索の研究では機械学習のモデル開発だけでなく,より良い学習をするためのデータ収集システムの開発も進めていく必要が述べられた.MIS-Cと川崎病について重症化予測や治療層別化に役立つマーカー探索の報告では,多施設共同研究が呈示された.冠動脈炎の病態解明に基づく新規治療薬の探索をに関する研究では,川崎病マウスモデルにおける心臓由来細胞のシングルセル解析について報告がなされた.また,川崎病患者の臨床情報から機械学習によって冠動脈病変出現の予測を試みた研究や,JROAD-DPCと日本循環器学会の研修施設の情報を用いた川崎病冠後遺症を有する患者の移行医療と生涯医療の実態調査が報告された.本総説を手に取り,川崎病の病因病態,治療の進歩に興味をもっていただければ幸いである.

We present excerpts from the “Kawasaki disease research in the data-driven era: From omics analysis to artificial intelligence” symposium held at the 60th Annual Meeting of the Japanese Society of Pediatric Cardiology and Cardiac Surgery. To determine the etiology of Kawasaki disease (KD), machine learning by sparse modeling of the nationwide survey data in Japan was performed and the results were presented. Moreover, the results of a multicenter study on multisystem inflammatory syndrome in children (MIS-C) and KD were also described. To elucidate the pathophysiology of coronary arteritis and to explore new therapeutic agents, the findings of a single-cell analysis of cardiac-derived cells over time in a KD mouse model were reported. Moreover, we provided the results of a previous research that attempted to predict the appearance of coronary artery lesions by machine learning based on the clinical information obtained from the KD patients. The study outcomes of a nationwide survey of transitional and lifelong medical care among adults with coronary sequelae of KD using the JROAD-DPC database as well as information on the training facilities of the Japanese Circulation Society and characteristics of patients at these centers were also detailed. We hope that you will consider this review paper and become interested in the etiopathogenesis of KD and its treatment advances.

Key words: Kawasaki disease; multisystem inflammatory syndrome in children; Omics; machine learning; data-driven research

This page was created on 2025-10-09T14:03:37.97+09:00
This page was last modified on 2025-11-14T16:35:11.000+09:00


このサイトは(株)国際文献社によって運用されています。